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Precise fetal head circumference measurement by ultrasound imaging is of great significance for prenatal
examination. However, missing or blurring boundaries caused by artifacts and noises challenge measurement
accuracy. The inconsistency between the segmentation pseudo-label and the ellipse contours also generates
measurement errors. To improve the measurement performances of fetal head circumference, in this study,
we propose an ellipse-guided multi-task network that measures the fetal head circumference according to
detected ellipse boundary pixels. In the proposed network, an region segmentation branch is designed to learn
region features of the fetal head, and a feature fusion module is applied to combine region features with
boundary features, which contribute to exploring more context information about the fetal head and locating
boundary pixels in boundary missing or blurring regions. A loss function is also designed in the network
to ensure the boundary estimation in an ellipse shape. Experiments are conducted on both the public fetal
head circumference measurement dataset HC-18 and a self-built ultrasonic phantom dataset. The experimental
results show that the proposed method achieves DSC 97.97%, HD 1.22 mm, and ADF 1.85 mm, which
demonstrates that the proposed method achieves excellent performance to compete with other state-of-the-art
methods in fetal head circumference measurement.

1. Introduction noise. Specifically, deep-learning-based measurement methods [6-10]

have been presented to regress the ellipse parameters directly from

Ultrasound imaging is widely used for monitoring fetal growth and
development during prenatal examination due to the advantages of
being non-invasive, non-radioactive, painless, and cost-effective [1]. In
prenatal examinations, fetal head circumference (HC) is an important
physiological indicator, which is required to be precisely measured
for gestational age prediction [2]. Besides, Measurement of the HC
is employed in many commonly used weight equations for the es-
timated fetal weight (EFW) [3]. Nevertheless, currently, clinical HC
measurement based on ultrasound imaging requires well-trained and
experienced sonographers since ultrasound images are not intuitive and
HC measurement results are operator-dependent and machine-specific
that leading to inter- and intra-observer variability [4,5]. Therefore, an
automatic measurement system of fetal ultrasound images is needed,
which not only can reduce the variability but also reduce the workload
of clinicians.

One of the commonly used approaches in automatic HC measure-
ment is ellipse estimation, as shown in Fig. 1(b). Random forest classi-
fier and Hough transform are applied in [4] to measure the fetal HC.
However, the traditional machine learning model is poor to against
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the original ultrasound images. Zhang et al. [6] directly measure the
head circumference by a CNN to localize and identify the head contour,
without having to resort to handcrafted features or manually labeled
segmented images. Li et al. [7] present a network to automatically
measure the fetal head circumference (HC), biparietal diameter (BPD),
and occipitofrontal diameter (OFD) length from 2D ultrasound images.
Rong et al. [8] propose using GVF as a reference to train a CNN
to derive an external force for the parametric active contour models
for curve evaluation. A multi-task deep convolutional neural network
is proposed for automatic segmentation and estimation of HC ellipse
in [9]. A regression CNN is designed to accurately delineate the HC
in [10]. However, these methods with a regression branch suffer from
high measurement errors in the ellipse parameter estimation since
ultrasound imaging contains various artifacts, such as motion blur-
ring, missing boundaries, acoustic shadows, and speckle noises, which
may cause boundary missing (the region in the red bounding box
in Fig. 1(a)) or blurring (the region in the orange bounding box in
Fig. 1(a)) of the fetal head. To solve this problem, HC measurement
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Fig. 1. (a) is an original ultrasound image and (b) is an ellipse annotation produced by the sonographer, (c) is a segmentation pseudo-label generated by filling the ellipse
annotation showed in (b). The boundary missing region is illustrated in the red bounding box and the boundary in the orange bounding box is blurring.

approaches based on the segmentation contour of fetal head area are
proposed [11-14]. A cascaded Fully Convolutional network is proposed
to exploit feature extractions and distinguish the anatomy with a dense
prediction map in [11]. A probabilistic deep learning approach for esti-
mation of fetal HC is developed in [12]. Al-Bander et al. [13] propose to
incorporate object localization mechanism in the segmentation frame-
work for improving fetal head contour detection. Multi-scale inputs
are employed to improve the localization of the fetal head in [14].
With the abundant context information of the segmentation results,
these segmentation-based methods can improve the performance of
evaluating the parameters of the fetal head region to a certain extent.
Nevertheless, the segmentation results are unreliable, because the anno-
tation provided by the clinician is fetal head elliptical contour (shown
in Fig. 1(b)) rather than the ground truth of the segmentation of the
real fetal head area. To train segmentation models [11-14], the whole
ellipse is treated as the pseudo-label of the segmentation (displayed in
Fig. 1(c)). As shown in Fig. 1, the shape of the fetal head region is not a
standard ellipse, which will lead to the model errors between the fetal
head region and the pseudo-label of the segmentation in the training
phase. This problem will weaken the performance of segmentation-
based measurement methods. Obviously, for the irregular fetal head
shape in ultrasound images, it is much easier to detect the fetal head
boundary pixels and fit an ellipse that is as consistent as possible with
the boundary than to obtain an accurate ellipse segmentation. Since the
elliptical contours are provided in this task, we argue that an elliptical
boundary, which can mostly cover the fetal head region, would achieve
a reliable measurement of fetal head circumference.

In this paper, we propose an ellipse-guided multi-task network
to boost the performance of HC measurement in ultrasound images.
Specifically, a boundary detection branch is developed to locate fetal
head boundary pixels considering that HC measurement is based on
the contours composed of these boundary pixels. Nevertheless, the exis-
tence of artifacts and maternal uterus, whose texture structure is similar
to fetal head boundary, would lead to missing or blurring boundaries in
ultrasound images, thus weakening the accuracy of boundary detection.
Therefore, the region features of the head area are extracted to assist
boundary detection, which can contribute to locating the boundary of
the fetal head and effectively remove false boundary detection. More-
over, to improve the robustness of the boundary detection, a feature
fusion module is designed to integrate the boundary features and region
features. More useful context information can be extracted from the
fused features, which improve the capability of boundary detection in
low contrast ultrasound images and even eliminates boundary leakages
in the boundary missing or blurring regions. As the shape prior to
the fetal head is an ellipse, an ellipse-shaped loss function is proposed
to constrain the results of boundary detection. Since the annotations
are standard ellipses, the ellipse-shaped loss can effectively guide the
detected boundary contours close to the elliptical annotations as much
as possible. This is particularly important for the improvement of
performance for HC measurement.

The proposed method is evaluated on the public dataset (HC-18 [4])
and a self-built simulated phantom ultrasound dataset. The experimen-
tal results show that the proposed method outperforms the state-of-the-
art methods. The main contributions of this work are summarized as
follows:

*An ellipse-guided multi-task network is proposed for end-to-end
fetal head circumference measurement.

The fetal head boundaries are obtained by the boundary detection
branch without having to resort to segmentation, which reduces errors
caused by the inconsistency between the segmentation pseudo-label
and the fetal head area.

*The localization information of the fetal head boundaries in the
region features from the region segmentation branch and the ellipse
information provided by an ellipse-shape loss are applied to improve
the measurement performance.

The remainder of this paper is organized as follows: In Section 2,
we describe the published fetal head measurement methods based on
a single model and multi-task learning. Then the details of our method
are illustrated and introduced in Section 3. The experimental results
and discussions on the HC-18 dataset are conducted in Section 4.
The experimental results and discussions on our self-built dataset are
conducted in Section 5. Finally, Section 6 and Section 7 discuss the
results and concludes the whole paper.

2. Deep learning-based method for fetal head circumference mea-
surement

Recently, deep learning methods have won great success in HC
measurement. The work in HC [12] develops two probabilistic CNN
methods: Monte Carlo Dropout during inference and probabilistic UNet.
The generated set of segmentation masks is used to reject acquired
images that produce sub-optimal HC measurements. In [11], a cascaded
FCN is applied for fetal head segmentation. Approaches based on a
single segmentation task such as [11,12] may ignore the potential infor-
mation in related tasks that can improve measurement performance. As
well-known that multi-task learning has been used successfully across
all applications of machine learning (e.g., [15-18]). The multi-task
learning strategy also has been used in HC measurement (e.g., [7,19],
and [9]). A regression branch is added in an FCNN, and the localization
information from the segmentation mask is applied to improve the
HC measurement in [7]. The work in [19] combines the classification
information of the fetal pregnancy cycle to improve the segmentation
performance. For multi-task learning, the higher the correlation be-
tween tasks, the greater the promotion effect on the main task [20].
Based on the simplification of fetal head circumference into an ellipse
circumference as mentioned in Section 1, ellipse information is much
useful to improve the measurement performance. Regressing ellipse
parameters from the segmentation features is employed as an auxiliary
task in a multi-task neural network [9], which can be trained by mini-
mizing a compound cost function composed of segmentation dice score
and mean square error (MSE). The localization information of the fetal
head is also considered for HC measurement performance improve-
ment. A combined fetal head localization and fetal head segmentation
method based on Mask R-CNN is proposed in [13].

Most of these above approaches take segmenting the whole fe-
tal head as a preliminary step for HC measurement. However, some
works [21,22] have been proposed that aim at directly extracting
biomarkers from medical images. The goal is to avoid intermediate
steps, such as segmentation, that may be computationally expensive
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Fig. 2. The architecture of our network. The network consists of a Darknet-53 encoder path and two decoder paths. One decoder path is the head region segmentation branch,
the other is the ellipse detection branch. The features from the segmentation branch and ellipse detection branch are fed into a feature fusion module, which can help the ellipse
detection branch to accurately locate the head boundary. The segmentation loss is computed by the segmentation output with the region ground truth, the boundary loss is
computed by boundary output and the contours labeled by experts, and the ellipse loss is computed by ellipse parameter output and the ellipse parameter label, which is designed

to do shape constraints on boundary detection results.

and prone to errors. A similar approach is proposed for HC measure-
ment in [6], where a regression CNN is applied to estimate the HC from
fetal head ultrasound images without having to resort to segmentation.
Considering that the localization of the fetal head is beneficial to
improving HC measurement performance, a region proposal CNN for
head localization and centering is used in [10]. The experimental
results demonstrate that it can improve the HC delineation performance
of the regression CNN.

According to these considerations, in this study, we design a direct
approach to estimate the HC by fetal head boundary detection with
a multi-task learning network. Different from the above methods, the
fetal head ellipse parameters are fitted on the detected boundaries
in our method, which does not rely on the edge of the head region
segmentation. For improvement of detection performance, the fetal
head region features from the region segmentation branch are used as
localization information of the fetal head boundary. And the ellipse
information is introduced into the network by an ellipse-shaped loss
which guides the detected boundary close to the ellipse shape.

3. Improving ellipse boundary detection with region features fu-
sion for fetal head circumference measurement

Although the fetal head boundaries are incomplete due to artifacts
and noise interference in ultrasound images, a good fetal head cir-
cumference method should be able to provide an accurate ellipse. It
means that the model should not only avoid the interference caused
by artifacts and noise but also obtain the ellipse contours from these
incomplete boundary pixels. The proposed method in this work extracts
the region features of the fetal head area for localization and guides
the output of the network close to the ellipse shape by an ellipse-
shape loss. These make our method has superior performance under
the interference of artifacts and noise.

Fig. 2 shows the architecture of our proposed network, the proposed
multi-task ellipse-guided network includes a framework for region
segmentation and an ellipse detection. Inspired by [23,24], and [25],
which show that coarse segmentation results can infer the context
information for performance improvement, We introduce segmentation
features into the boundary detection branch to dynamically extract
the context information contained in the segmentation, which helps
the boundary detection branch to distinguish boundary pixels from

background pixels. The region features from the segmentation branch
and boundary features from the detection branch are integrated and
further selected to explore more context information for boundary
detection. The prior shape information is also incorporated into the
ellipse detection branch, which can guide the feature extraction in the
model. Fit the output of the boundary detection with an ellipse, and
an ellipse-shaped loss is designed to supervise the ellipse parameters.
Based on the output ellipse parameters, the HC length is computed.
More details will be introduced in this section.

3.1. Ellipse detection and region segmentation framework

Generally, the context information is useful for improving the per-
formance in many visual applications (e.g., [26-28]). As mentioned
above, the information in region segmentation features is also useful for
distinguishing boundary pixels and noise. For enhancing the ability of
ellipse detection of the fetal head, the context information in fetal head
region features is introduced into boundary detection for an accurate
boundary. A feature fusion module is used to integrate information
between the region segmentation features and the ellipse detection
features, which contributes to accurate ellipse detection due to the
provision of boundary and region information of the fetal head.

In this study, we modify the Darknet-53 [29] as an encoder path to
extract detailed context features, the two decoder paths are the region
segmentation branch and the ellipse detection branch, respectively. As
shown in Fig. 2, each the i,4 Encoder block contains x; DarknetResidual
block (where x; € {1,2,8,8,4}, and ie {1,2,3,4,5}). We apply Conv
batch instead of Maxpooling layer to do downsampling since some
significant spatial information is lost by Maxpooling operations [30],
which is important for boundary detection. The Conv batch block con-
tains a convolutional layer (kernel size = 3, stride = 2). The convolution
is followed by batch normalization and a LeakyRelu with a constant
multiplier «, equal to 0.1 to control the slope of the activation function
for negative values. Similarly, the Tf layers presented in Fig. 2 are also
applied both on the two decoders to concatenate the correspondingly
feature map from the encoder path. Each decoder block contains 1
DarknetResidual Block. A deConv batch block is used to do upsampling.

To alleviate the influence of boundary missing and blurring regions
for the ellipse detection, the framework in our method simultaneously
learns the region information in the segmentation features and bound-
ary information in the detection features. And the region information
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Fig. 3. Ellipse boundary and segmentation feature fusion module.

can be treated as boundary localization in boundary missing or blurring
regions. For exploring more context information on the fetal head
boundary, a feature fusion module is designed to achieve feature in-
tegration between region features and boundary features. The details
of the feature fusion module will be presented in the next section.

3.2. Ellipse boundary and segmentation feature fusion module

For the information integration between the region and the bound-
ary, a feature fusion module is designed to fuse context features in the
two decoding paths. The fusion module can assist the ellipse detection
branch in accurately locating boundaries according to the region in-
formation. The feature fusion module is shown in Fig. 3. The region
segmentation features F,, contain rich context information, while the
boundary features Fj contain rich shape information. The fusion block
can be formulated as follows:

Fp=a(f(Fp)+ Fp) + Fg @

F), = a(f(Fp)+ Fp) + Fg ()]

where Fj, denotes the output detection features, and F/, denotes the
output segmentation features, f means 1 x 1 convolution with BN and
Relu. @« means coordinate attention module [31]. Some visualization
examples are given in Fig. 4. From the comparison, we can see that
the processed features by feature fusion module (illustrated as Fig. 4(d)
and Fig. 4(i)) contain more accurate boundary information in boundary
missing or blurring regions than original features (presented as Fig. 4(b)
and Fig. 4(g)), which improves the boundary detection performance,
as shown in Fig. 4(c) and Fig. 4(e), Fig. 4(h) and Fig. 4(j). Obviously,
the boundary detection capability of the ellipse detection framework is
get improved so that weak boundaries in boundary missing or blurring
regions can be correctly identified. It means that the feature fusion of
the segmentation context information is necessary.

3.3. Ellipse-shaped loss

To keep the boundary close to the fetal head ellipse shape and
achieve higher performance, ellipse fitting is performed on the output
of the boundary detection branch, and an ellipse-shaped loss is designed
(as shown in Fig. 2) considering the shape constraint [32,33], which
can be defined as

Lg = MSE((a,b,x.y,0), y(a.b,x,y,0)) &)
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Table 1

The distribution of HC-18 dataset.
Period Train set Validation set
First trimester 165 55
Second trimester 693 233
Third trimester 141 47
Total 999 335

Table 2

The dataset distribution of ablation experiments.
Period Training set Test set
First trimester 150 15
Second trimester 623 70
Third trimester 125 16
Total 898 101

where MSE is the Mean Square Error function. a, b, x, y, 6 are the ellipse
parameters, a and b are major and minor semi-axes of ellipse, x and y
are center coordinates of ellipse, 6 is rotation angle of ellipse, as shown
in Fig. 2. y(a,b,x,y,0) is the prediction of ellipse fitted by detected
boundary pixels, y(a,b,x,y,0) is the provided label. The least-square
fitting is used to do ellipse fitting on the detected boundary pixels’
coordinates. The ellipse-shaped loss Ly can guide the training of our
model in an end-to-end fashion.

With the obtained ellipse-shaped loss in Eq. (3), the final loss
function of our multi-task network can be defined as:

L= Lyee(¥s:¥5) + Lyice Vi YE) + Ly sp(9(a, b, x, y,0), y(a, b, x, y, 0)) (4)

where the segmentation loss L;..()s, ys), the boundary detection loss
Lyiee(Vg,vg) and the ellipse-shaped loss L gg(3(a,b,x,y,0),
¥(a, b, x,y,0)). ¥s is segmentation prediction, yg is the segmentation
pseudo-label. And j is the boundary detection results, y is the fetal
head ellipse contour. With the final loss, the multi-task model can
eventually learn the features of fetal head boundary and region under
the constraint of ellipse shape. Here, dice loss is a general objective for
region segmentation [34]. For boundary detection loss, we also employ
dice loss as objective rather than cross-entropy, because the dice loss
is insensitive to the number of foreground/background pixels, thereby
alleviating the class-imbalance problem [35].

4. Experiments on HC-18 dataset
4.1. Experimental setup

In experiments, we evaluated the performance of our method on
a publicly available dataset HC-18. Table 1 shows the distribution of
HC-18 datasets from the first to the third trimester. Since the ground
truth was not available in the original HC-18 test set, we divided 90%
annotated images of the HC-18 training set into our train set and
the rest images into validation set, as listed in Table 2. The ablation
experiments were studied by using 10-fold cross-validation. Annotated
images of HC-18 had the resolution of 800 x 540, with the pixel size
from 0.0520 mm to 0.326 mm. In our experiments, all images were
padded to 800 x 800 pixels with zero, then resized to 416 x 416
pixels. Online data augmentation such as rotation, gray transformation,
and horizontal flip was randomly applied at each training iteration.
The batch size was set as 8 and the epochs were 200. In the training
step, Adam optimizer with an initial learning rate of 0.0001 was
used to minimize the multi-task loss in Eq. (4). All experiments were
implemented using the deep learning framework Pytorch on a computer
with NVIDIA GTX 1080Ti GPUs.

To evaluate the HC measurement performance on HC-18, we chose
three metrics, including Dice similarity coefficient (DSC) [%], Absolute
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Fig. 4. Comparison between with and without feature fusion module. (a) is an ultrasound image with a blurring boundary. (b) is the output feature without the feature fusion
module in the model. (c) is the detected head boundary without the feature fusion module. (d) is the output feature with the feature fusion module in the model. (e) is the detected
head boundary with the feature fusion module. (f) is an ultrasound image with boundary missing. (g) is the output feature without the feature fusion module in the model. (h) is
the detected head boundary without the feature fusion module. (i) is the output feature with the feature fusion module in the model. (j) is the detected head boundary with the
feature fusion module. It can be seen that more details about head boundary can be found by the context information from the segmentation branch.

Fig. 5. Qualitative evaluation of boundary detection ablation studies on the HC-18 training set with 10-fold cross-validation. The first and the fourth row show examples with
poor fetal head boundary contrast to the background. The images in the second and the fifth row are examples of fetal head boundary-blurring regions. The third and the sixth
row presents examples with boundary missing regions. Each column shows the original ultrasound images (first column), the corresponding ellipse annotations (sixth column), the
ellipse detection results obtained by Model 1 (second column), Model 2 (third column), Model 3 (fourth column), Model 4 (fifth column), respectively.

Difference (ADF) [mm], and Hausdorff Distance (HD) [mm]. They are
defined as:

DSC = 20,07 (5)
DARA

ADF = |HC, - HC,| (6)

HD = max(h(Y,.Y,), h(Y,.Y,))

h(Y,,Y,) = maxygeypminypey‘g IY,-Y,

h(Y,,Y)) = maxy ey miny ey || Yy =Y, | @

where Y, denotes the fetal head area delimited by the ellipse contours
delineated by the clinician, Y, is the fetal head area delimited by
the ellipse obtained with our proposed method. HC, represents the
circumference measured from the ellipse detection branch, and HC,
is the manual annotation.

4.2. Ablation experiment on the HC-18 training set
To show the effectiveness of different components in our model,

we present an ablation experiment on the training set with 10-fold
cross-validation. In summary, the following models are compared:

Table 3
Ablation results on the HC-18 training set with 10-fold cross-validation (mean +
standard deviation).

Methods DSC (%) HD (mm) ADF (mm)

Model 1 97.86 + 0.85 1.20 + 0.98 2.07 + 1.54
Model 2 97.90 + 1.13 1.18 + 1.26 1.94 + 1.15
Model 3 98.05 + 0.77 1.14 + 0.82 1.88 + 1.34
Model 4 (ours) 98.08 + 0.96 1.08 + 1.02 1.82 + 1.21

Model 1: consist of the Darknet-53 encoder and a decoder for
boundary detection.

Model 2: combine a region segmentation branch with the Model 1.

Model 3: add feature fusion module based on Model 2.

Model 4 (ours): add the ellipse-shape loss to introduce shape
constraint to the Model 3.

The quantitative analyses are shown in Table 3 and the qualitative
of boundary detection and region segmentation are presented in Figs. 5
and 6. Note that all evaluation criteria in Table 3 are obtained by
averaging the 10-fold cross-validation, from which it can be seen that
the lowest mean AD (2.07 mm) is obtained with the Model 1 (boundary
detection only), which shows the challenge of boundary missing or
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Fig. 6. Qualitative evaluation of region segmentation ablation studies on the HC-18 training set with 10-fold cross-validation. From top to bottom, there are examples in the first
trimester, second trimester, and third trimester, respectively. From left to right, each column shows the original ultrasound images (first column), the corresponding ground truth
(last column), and the segmentation results obtained by Model 2 (second column), Model 3 (third column), and Model 4 (fourth column), respectively. .
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Fig. 7. The t-test results of statistical significance of the difference between ablation
study on each component in our framework. The smaller the p-value, the more
significant the difference.

blurring regions for boundary detection. However, it can be observed
that Model 2 yields improvements in terms of ADF (0.13 mm). We
can see from the second column and the third column in Fig. 5, that
after adding the region segmentation branch, more accurate bound-
ary pixels can be detected in boundary missing or blurring regions
noted in the red bounding box. This achievement can be explained by
learning region features which encourage the network to explore more
information to distinguish the fetal head area from the background.
Benefiting from the feature fusion module, the performance of DSC, HD,
and ADF in Table 3 has been further improved, increasing by 0.15%,
0.04 mm, and 0.06 mm, respectively. As shown in the fourth column in
the figure, the wrong boundary pixels are corrected, and the detected
boundaries of the fetal head are more complete. This means that the
designed feature fusion module can select better context information
in the boundary features and region features, thereby facilitating the
boundary detection branch to locate the head boundary. With the
ellipse shape loss added in Model 4, the detected boundary is closer
to the elliptical shape, and the detected boundary is more complete.
And according to the Table 3, DSC value, HD value and ADF value
increased by 0.03%, 0.06 mm, 0.06 mm respectively. The ellipse-
shaped loss does well in shape constraint and guiding the detected
boundary contours and boundary of region segmentation much closer
to the ellipses covering the fetal head area, as shown in Figs. 5 and 6.

In addition, we also have reported the complexities of the pro-
posed method in Table 4, which includes the parameter amounts for
each component in our network and the computational complexity

(GFLOPs). It can be seen from Table 4 that our feature fusion module
costs only 0.0028 M parameters, which has significantly improved the
measurement performance as shown in Table 3 and Fig. 5.

To further explore the robustness of each component in our frame-
work, we perform t-tests on the results of the ablation study on each
component, the p-values are presented in Fig. 7. It can be seen that
there are significant differences in performance between the mod-
els with dual decoders and model 1, which is with one decoder for
boundary detection. It is also evident that the boundary localization
information contained in the region segmentation features contributes
to improving boundary detection. Moreover, Model 4 with ellipse shape
loss to do shape constraint also gains a performance gap in ADF scores
compared with those without the ellipse shape loss. From Fig. 5, it
can be observed that the detected boundary of the fetal head becomes
more and more accurate, which reveals the powerful ability of each
component in our method.

4.3. Generalizing analysis of cross-trimester validations on the HC-18 train
set

For generalizing analysis of our proposed network, the cross-
trimester validations are performed on the HC-18 train set with 10-
fold cross-validation. The results are listed in Table 5. For the former,
the model is trained on the single-trimester training set and tested on
the all-trimester testing set. It can be seen that the metrics decrease
slightly when training with single-trimester data and testing on all
trimesters, which demonstrates that the proposed network is with good
generalizing ability. Additionally, when the model is trained on the
third trimester data, the metrics decline minimally, indicating that
accurate measurement in the third trimester has a large impact on the
performance.

4.4. Ablation experiment on the HC-18 test set

Combined with our best settings in the deep neural network, we
experimented with our proposed HC measurement method on the HC-
18 test set. The quantitative and qualitative evaluation results are
illustrated in Table 6 and Fig. 8, respectively. It can be seen from
that all the components of our model have improved the performance
on the HC-18 test set. Compared with Model 1, Model 2 shows bet-
ter performance with DSC and ADF increased by about 0.23% and
0.11 mm, respectively. The feature fusion module has further im-
proved performance in Model 3, with DSC, HD, and ADF increased
by 0.16%, 0.13 mm, and 0.09 mm, respectively. This reflects that the
context information contained in the region features is beneficial to the
boundary detection in boundary missing or blurring regions. Under the
supervision of ellipse shape loss in Model 4, DSC, AD, and HD have
been improved by 0.07%, 0.01 mm, and 0.06 mm, respectively. This
achievement can be explained by limiting the detected boundary pixels
to the contour of the ellipse as much as possible by the ellipse loss
function.
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Table 4
The complexity analysis of the proposed network.
Parameters (M) FLOPs (G)
Encoder Decoder 1 Decoder 2 ESFF Total GFLOPs
14.89 2.79 2.79 0.0028 20.47 45
ESFF denotes the ellipse boundary and segmentation feature fusion module.
Table 5
The generalizing performance results of cross-trimester validations (mean +standard deviation).
Train data Test data Metrics
DSC (%) HD (mm) ADF (mm)
First trimester All trimester 97.65 + 2.06 1.25 + 1.56 1.90 + 1.64
Second trimester All trimester 97.73 + 1.12 1.18 + 0.96 1.87 + 1.35
Third trimester All trimester 97.79 + 1.03 1.15 + 0.67 1.85 + 1.46
All trimester All trimester 98.08 + 0.96 1.08 + 1.02 1.82 + 1.21

Fig. 8. Qualitative evaluation of ablation study on the HC-18 test set. From top to bottom, there are examples in the first trimester, second trimester, and third trimester,
respectively. From left to right, each column shows the original ultrasound images (first column), and the boundary detection results obtained by Model 1 (second column), Model

2 (third column), Model 3 (fourth column), and Model 4 (fifth column), respectively. .

Table 6
Ablation studies on the HC-18 test dataset. The bold number indicates the best
performance in each column (mean + standard deviation).

Methods DSC (%) HD (mm) ADF (mm)

Model 1 97.97 + 1.09 1.25 + 0.71 211 + 1.97
Model 2 97.74 + 1.24 1.36 + 1.94 2.00 + 1.94
Model 3 97.90 + 1.26 1.23 + 0.69 1.91 + 1.79
Model 4 (ours) 97.97 + 1.15 1.22 + 0.77 1.85 + 1.96

4.5. Comparison with previous studies on the HC-18 test set

Performance comparisons are conducted with different state-of-the-
art methods, where the results are listed in Table 7. All these methods
were developed and tested using the HC-18 [4] dataset. The relative
performance metrics, exhibited in Table 7, are extracted from the
corresponding published papers. The fetal head measurement method
is based on a single model [8] which employs the active contour model
to obtain the fetal head boundaries and achieve the worst performance.
Although they have the same ideas as us that employing the direct
least-squares fitting of ellipses method to fit the fetal head boundaries
obtained models, and do not rely on the fetal head region segmen-
tation, our method can obtain about 2.48%, 1.22 mm, and 0.6 mm
improvements in terms of DSC, HD, and ADF, respectively. This can
be explained by the reason that we apply a multi-task learning strategy
in our method, which improves the boundary detection performance
by introducing the head region information and ellipse shape prior
information to the boundary detection branch. The work in [14] is
also based on a single model, thus, they obtain improvements of
0.58 mm in ADF index than [8], by using multi-scale inputs in the
segmentation network. The ability of a single-task supervised model to
extract features is poor, and the head region segmentation method [14]
or boundary detection method [8] based on a single model needs to be

improved in the performance of fetal head circumference measurement.
The work in [10,13] both employ object localization to improve the
HC measurement accuracy. In [13], the Mask R-CNN is adopted to
improve the fetal head segmentation accuracy by combining object
localization and segmentation in a framework, which helps them obtain
a 1.2 mm improvement in ADF metric than [33]. Differently, a region-
proposal CNN is used for head localization and centering in [10], which
improves the accuracy of a regression CNN for HC delineation. They
get significant improvements of 0.55 mm and 0.32 mm in ADF score
than [8,14], respectively. And the work in [9] creatively introduces
estimation of HC ellipse in a framework developed for segmentation
purposes to improve the segmentation accuracy. The results improved
by 0.33 mm and 0.1 mm in terms of ADF. Compared with these
methods, our method achieves the best performance in all three met-
rics, which benefit from the ellipse-shape constraint by ellipse-shape
loss and the boundary localization information provided by fetal head
region features. And we tackle the problem of inconsistency between
segmentation pseudo-label and ellipse annotation mentioned in Fig. 1
by employing the ellipse fitting on the detected fetal head boundaries
directly.

4.6. Loss curves

In this section, the loss curves of training phase is provided in Fig. 9.
It can seen that the training loss and validation loss reduce gradually.
The convergence of the loss curves demonstrates the effectiveness of
the proposed method.
5. Experiments on our self-built dataset

5.1. Experimental setup

As mentioned, the main idea of our method is doing the measure-
ment on the detected boundary pixels, which is helpful in reducing
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Comparison with other methods on HC-18 test dataset. The bold number indicates the best performance in each column (mean

+ standard deviation).

Methods DSC (%) HD (mm) ADF (mm) Params (M)
Heuvel et al. [4] 97.00 + 2.80 2.00 + 1.60 2.80 + 3.30 -

Rong et al. [8] 95.49 + 4.11 2.44 + 1.96 2.45 + 2.55 -
Al-Bander et al. [13] 97.73 + 1.32 1.39 + 0.82 2.33 + 2.21 345
Sobhaninia et al. [14] 92.46 + N.A. 3.40 + N.A. 2.22 + N.A. -
Sobhaninia et al. [9] 96.84 + 2.89 1.72 + 1.39 2.12 + 1.87 26.91
Fiorentino et al. [10] 97.76 + 1.32 1.32 + 0.73 1.90 + 1.77 50.54
Ours 97.97 + 1.15 1.22 + 0.77 1.85 + 1.96 20.47

The params are calculated based on the network structure described in the corresponding work.
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Fig. 9. Loss curves of training and validation set.

errors caused by the inconsistency between the segmentation pseudo-
label and the ellipse annotations. And the boundary pixels in missing or
blurring boundary regions can be more easily localized by the proposed
method. To validate the effectiveness and robustness of the proposed
method, experiments were conducted on a self-built dataset.

We used hand-held ultrasound equipment to collect phantom data,
which is regarded as the simulation of fetal head ultrasound images.
The boundary in the ultrasound phantom image was randomly oc-
cluded to simulate boundary-missing cases (For each image, we used
cut image blocks to randomly occlude the boundary of % circumfer-
ence). And measuring the circumference of the circular area in the
ultrasound image was used to simulate the HC measurement. Here
we designed four groups of experiments on our self-built dataset to
verify the effectiveness and robustness of our method for cases with
boundary missing or blurring cases: ultrasound images with 5 MHz
center frequency (data 1, high-resolution images with clear bound-
aries), ultrasound images with 3.5 MHz frequency center frequency
(data 2, low-resolution images with blurring boundaries), ultrasound
images with 5 MHz center frequency and boundary occlusion (data 3),
ultrasound images with 3.5 MHz and boundary occlusion (data 4). Data
1 and data 2 were conducted as a comparative experiment to study
the boundary detection ability of our method with different blurriness
images. Data 3 and data 4 were used to study the measurement accu-
racy of our method with the boundary-missing images. We compared
the experiment results by UNet++ [36], and Sobhaninia et al. [9]. One
is a measurement method based on a single segmentation model, and
the other is a measurement method based on multi-task learning. The
experimental parameters and software and hardware environment were
the same as those experiments in Section 4, except the epochs were set
at 30 for our self-built dataset.

Table 8
Equipment parameters for ultrasound image acquisition.

Parameters Machine index Gain Dynamic range Center frequency
datal 0.7 80 dB 80 dB 5 MHz
data2 0.6 88 dB 90 dB 3.5 MHz

5.2. Ultrasonic data acquisition and processing

The handheld ultrasound equipment we used was Sonoster UProbe
(a digital ultrasonic imaging diagnostic instrument with 128 arrays
convex probe shown in Fig. 10(a)), and the ultrasound phantom is CIRS
040GSE (Fig. 10(b)). And ultrasonic images with different resolutions
were obtained with the center frequencies of 5 MHz and 3.5 MHz,
respectively (an example as Fig. 10(c), the equipment parameters of
ultrasonic image acquisition are listed in Table 8.) Placed the probe
directly on the surface of the phantom and changed the parameters of
the probe to obtain ultrasound images of the phantom with different
resolutions. Images were stored in MP4 format, and each MP4 file con-
tained 100 images. After obtaining the phantom ultrasound image, the
image was clipped according to the position of the circular area, and the
clipped sizes were 395 x 278 pixels to 222 x 166 pixels. The pixel size
of these images is 0.0036 mm. Then we labeled the clipped image with
LabelMe (an online open annotation tool). The data was augmented by
rotation (90°, 180°, 270°) and gamma transformation (gamma factor
y € {0.6,0.7,0.8,0.9,1.1,1.2,1.3,1.4}). The private simulated phantom
ultrasound dataset included 700 images for training and 100 images for
testing. The size of images in this dataset was from 395 x 278 pixels to
222 x 166 pixels, resized to 256 x 256 pixels with zero padding.

5.3. Results on our self-built dataset

We now compare our method with two published studies [9,36]
on our self-built dataset. For the fairness of the results, the same
experimental parameters and experimental data were used for these
three methods. With results shown in Fig. 11, it can be observed
that: our proposed method consistently outperforms these two methods
on our self-built dataset in terms of DSC, HD, and ADF metrics for
all four experiments. For ultrasound images with 5 MHz or 3.5 MHz
center frequency, which means these images with different blurriness
boundaries, the results by UNet++ [36] drop 0.0003 mm, the results by
Sobhaninia et al. [9] drop 0.0007 mm, and the results of our method
drop 0.0001 mm. Our method achieves the least accuracy reduction
compared with UNet++ [36] and Sobhaninia et al. [9] in ADF values.
These results further validate the effectiveness of our proposed method
for boosting the measurement performance in boundary-blurring cases.
Our proposed method and the work [9] both apply the multi-task learn-
ing strategy, but the results of our method are better. The intermediate
steps, such as segmentation in HC measurement, are prone to errors.

For ultrasound images with boundary occlusion, which means these
images with boundary missing regions. The results show that our
proposed method achieves the best performance in terms of DSC, HD,
and ADF metrics. The measurement method based on UNet++ [36]
is most affected, and the accuracy of the three metrics decreased
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Fig. 10. The equipment of our experiments. (a) is the handheld ultrasound equipment, (b) is the ultrasound phantom, (c) is an ultrasound image with 5 MHz center frequency
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Fig. 11. Results of our self-built dataset. (a)-(c) are DSC (%), HD (mm), ADF (mm) respectively. We compared our method with the other two (UNet++ [36], Sobhaninia et al. [9])
on the four experiments (5 MHz denotes ultrasound images with 5 MHz center frequency (data 1), 3.5 MHz denotes ultrasound images with 3.5 MHz center frequency (data 2), 5
MHz with occlusion denotes ultrasound images with 5 MHz center frequency and boundary occlusion (data 3), 3.5 MHz with occlusion denotes ultrasound images with 3.5 MHz
center frequency and boundary occlusion (data 4). The t-tests are conducted on the results in terms of ADF as shown in (c): * denotes the p-value < 0.05; #+ denotes the p-value

< 0.01; s denotes the p-value < 0.001; and s« denotes the p-value < 0.0001.

sharply. Sobhaninia et al. [9] apply a multi-task strategy to improve the
accuracy of boundary-blurring cases, but their method does not work in
boundary-missing cases, with a reduction by 0.6% (DSC), 0.0039 mm
(HD), 0.0054 mm (ADF) on data 3, and reduction by 4.38% (DSC),
0.0276 mm (HD), 0.0035 mm (ADF) on data 4, respectively. They
cannot effectively guide the segmentation in these boundary-missing
pixels by regressing elliptic parameters on the segmentation features.
Differently, we add ellipse-shaped loss on boundary detection results,
which avoids the difficulty of network training caused by the fluctu-
ation of shape constraints and can guide the prediction results closer
to the ellipse more effectively. The results of the proposed method
slightly drop 0.1% (DSC), 0.0006 mm (HD), 0.0054 mm (ADF) on data

3, and 0.19% (DSC), 0.0014 mm (HD), 0.0016 mm (ADF) on data 4,
respectively.

Fig. 11(c) presents the T-tests are performed on the results of differ-
ent methods in terms of ADF, it can be seen that there are significant
differences in performance between the proposed method and the other
two. Especially for the images with more noise and boundary occlusion,
our proposed method gains a performance gap compared with U-
Net++ [36] and Sobhaninia et al. [9] And the results presented above
show that the proposed method achieves the most superior performance
in terms of ADF and its average value and variance for the designed
four experiments. That convincingly demonstrates the effectiveness and
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robustness of our proposed method in handling cases with boundary
missing or blurring regions for fetal head circumference measurement.

6. Discussion

While a lot of deep learning methods have been proposed so far, it is
still a challenging task for us to find an effective and robust solution to
the HC measurement task in ultrasound images. Compared with other
medical imaging technologies, one of the main challenges for tasks in
ultrasound images is the low contrast between the pixels of the target
boundary and background due to extensive artifacts and noise during
imaging. Some HC measurement methods based on a single model to
segment the fetal head region or detect the fetal head boundary cannot
achieve good performance in the first trimester (e.g., [4]) since the fetal
skull is relatively soft in the first trimester, it does not always appear
brighter than the inside of the fetal head. Therefore, it is sometimes
very difficult to detect the boundary of the fetal head in the first
trimester, especially when it lies close to the wall of the uterus. For this
reason, some methods employ a multi-task strategy to introduce fetal
head localization for the improvement of fetal head boundary detec-
tion. However, they obtain lower performance for images from the third
trimester (e.g., [10]). The primary reason for these results from the fact
that the higher pixel dimension in images from the third semester with
respect to images from the other trimesters, thus the advanced reason
is that error caused by inconsistency between the head contour labeled
by experts and the actual fetal head shape. To handle the challenges
mentioned above, a region segmentation branch is designed to learn
region features of the fetal head, which contributes to exploring more
context information and locating boundary pixels in boundary missing
or blurring regions. And we do ellipse fitting on the detected fetal head
boundary pixels rather than on the extracted boundary of segmentation
results, which avoids errors caused by the inconsistency of fetal head
shape and segmentation pseudo-labels. Besides, an ellipse-shape loss
is employed in our method that supervises the detected boundaries
close to the ellipse shape. It can be seen that the proposed framework
provided the highest performance among the state-of-the-art methods
tested on the same dataset in Table 6, which obtain encouraging results
with a mean AD of 1.85 mm and low standard-deviation value (+ 1.96).
The value obtained is two orders of magnitude lower with respect to the
HC length (mean HC in the training set = 174.38 mm), thus showing
great potential for clinical practice applications. The proposed pipeline
achieves real-time inference using a powerful GPU, which costs about
0.02s. At the same time, when using a less powerful computational
resource (Intel (R) Core (TM) i7-7700 CPU), we achieved an inference
time lower than 0.5s. We believe this may be suitable for clinical appli-
cations, considering that the manual measurement of the US images by
clinicians could take more time. Moreover, we also apply the proposed
framework to the self-built dataset, which is collected by a digital
ultrasonic imaging diagnostic instrument with 128 arrays convex probe
(Sonoster UProbe). The results in Fig. 11 are a powerful validation of
the generalization ability of the proposed work, we believe this may be
compatible with existing sonography.

Although our proposed method has shown promising results, there
are still limitations that existed. To analyze the limitations of the
proposed method, we give two visualization samples of failure cases
in Fig. 12. Due to the joint noise and artifacts covering most boundary
pixels of the fetal head, the performance of our method will be weak-
ened, and the fitted ellipses will be erroneous. In these failure cases,
long-range dependence is needed for predicting the missing boundary
pixels according to the few that existed. Future directions of this work
include investigating more advanced modules such as Transformer
(e.g., [37,38]) for improving the boundary detection performance. For
the threats-to-validity of the experimental results, we think that the
prior ellipse information may not be the best shape loss because the
ellipse cannot fit the fetal head well. Considering that most existing
methods [4,9], and [10] are based on Ground Truth with the ellipse
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Fig. 12. Failure cases of proposed method on the HC-18 test set.

shape, we also choose the prior ellipse information as the shape loss
for a fair comparison. In the future, we will do further research to
discover better shape loss for this task. Additionally, considering the
measurement of HC is an important parameter for EFW, on the basis of
this study, the fetal weight estimation will be further explored in the
future.

7. Conclusion

In this work, we propose an ellipse-guided network for fetal head
circumference measurement in ultrasound imaging, which focuses on
pixel prediction in boundary missing or blurring regions. The core
idea is to introduce region features by the feature fusion module and
detect the fetal head boundary under the ellipse shape supervision to
improve the measurement performances. Both the public dataset HC-
18 and a self-built dataset are used to validate the effectiveness of
our proposed method. The experimental results show that the pro-
posed method achieves DSC 97.97%, HD 1.22 mm, and ADF 1.85 mm,
which are better than the performances of the other state-of-the-art
approaches. It is also worth mentioning that this work is among the
first attempts to directly detect the fetal head boundaries for fetal head
circumference measurement without resorting to segmentation edges,
which provides great support to sonographers in the clinical practice of
prenatal examination.
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