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ARTICLE INFO ABSTRACT
Keywords: Cross-scale measurement techniques are pivotal for seamless coordination between robotic macro and mi-
Microvision

cromanipulation. While computer microvision offers non-contact and multi-degree-of-freedom capabilities, its
limitations in measurement range and narrow field-of-view (FOV) prove unsatisfactory for robotic macro-
micro manipulation. This study presents a marker-assisted microvision-based method to minimize errors during
measurement range extension and ensure precise cross-scale motion measurement for robotic macro-micro
manipulation. The microvision-based system utilizes the microstructural pattern designed for global map
construction. Additionally, it employs a learning-based approach to efficiently estimate the FOV position for
macro-motion measurement, followed by the integration of micro-motion tracking within the FOV for precise
micro-motion measurements. Experimental investigations showcase a measurement accuracy of 9 pm in an
extended range of 3.11 mm for macro-motion estimation and 219 nm for micro-motion measurement, which
highlight the microvision-based method in achieving effective cross-scale motion measurement, potentially
paving the way for the automation of robotic macro-micro manipulation.

Cross-scale measurement

Robotic macro-micro manipulation
Marker-assisted

Global map construction

1. Introduction one of the most promising approaches for automation in robotic ma-
nipulation, with desirable features such as direct visualization, easy
integration, multi-DOF sensing ability, and tremendous available infor-
mation [5]. In recent studies, a microvision-based measurement method

using template matching was proposed by Li et al. [6] for robotic nano-

Macro-micro mechanical architecture has shown great advantages
in robotic manipulation systems as the intrinsic capability to enable the
long-stroke, high-speed, and high-precision performances [1]. Switch-
ing between fine and coarse positioning with such robotic systems is
a hot research topic, and it often involves integrating several mea-
surement techniques. For instance, the use of capacitive sensor sensing
techniques has been employed to measure the motion of a nanoposi-
tioning robot [2], while laser displacement sensing techniques have

positioning. A phase correlation algorithm was designed by Marturi
et al. [7] for 5-DOF motion measurement of nano-positioning stages. An
intelligent feature-matching approach for robotic micromanipulation
was proposed by Qin et al. [8]. An optical-flow-based algorithm for full-

been applied to track the macro-positioning robot [3]. Nevertheless,
capacitive sensing techniques or laser techniques inherently offer single
degree-of-freedom (DOF) linear measurement for one sensor. Achieving
multi-DOF measurement often requires cumbersome hardware, result-
ing in significant drawbacks such as narrowing the workspace of robotic
manipulation and the necessity for customized mechanical structure
design [4]. As a result, these measurement techniques would boost
the costs and complicate the system setup due to the necessity of
customized mechanical structure design.

On the other hand, by combining microscopy and computer vi-
sion techniques, microvision-based motion measurement has become
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field motion measurement of the robotic micro-positioning stage was
developed by Yao et al. [9]. Zhao et al. [10] proposed a marker-assisted
microvision-based method employing feature matching to achieve sub-
microscale measurement. While these microvision-based methods have
demonstrated nanometer resolution, their measuring range is typically
confined to the microscale due to the narrow field of view (FOV)
of the microvision systems, which significantly restricts the robotic
workspace.

To address the aforementioned issue, a few solutions have been
investigated for microvision systems. For instance, switching to a lower
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Table 1
Comparison of the microvision-based methods for cross-scale measurement.

Methods

Characteristics

Laurent et al. [13]
Clévy et al. [15]
Proposed approach

LFSR sequence encoding, phase-based
QR code encoding, phase-based
Periodic and fiducial pattern, learning-based

magnification objective lens could enlarge the FOV of the microvi-
sion systems, but it would sacrifice the measurement precision. To
extend the measuring range while maintaining high accuracy, Potsaid
et al. [11] proposed a customized adaptive objective lens. However,
this objective lens exhibited low stability and repeatability, imposing
significant limitations on its applications. Generally, the microvision
systems with this kind of adaptive magnification rely on mechanically
moving the solid lenses, which inevitably increases the weight and
complicates the system configuration. Moreover, the requirement to
displace the optical elements makes these microvision systems vulner-
able to mechanical vibration and misalignment. Besides, the response
time increases with the displacement, making fast switching between
different magnifications difficult [12].

Therefore, microvision systems with a fixed objective lens are much
more cost-efficient, compact, and stable for motion measurement. Ac-
cordingly, a microvision-based cross-scale measurement method with
a fixed objective lens was developed by Laurent et al. [13] to achieve
a large range-to-resolution utilizing phase correlation. However, this
method required encryption, including sophisticated bit encoding and
decoding, i.e. pseudo-random binary sequences obtained by linear feed-
back shift register (LFSR), and it could be affected by occlusion from the
manipulated objects on the encoded micro-patterns [14]. Recent efforts
by Clévy et al. [15] aimed to simplify the marker-assisted measurement
method by incorporating periodic and fiducial patterns for enhanced
versatility. Nevertheless, this approach still requires the use of QR codes
for accurate measurement. As a result, we are motivated to develop a
more intuitive and practical method capable of simultaneously achiev-
ing an extensive measuring range and high accuracy for cross-scale
measurements, with the ultimate goal of automating robotic tasks such
as macro-micro manipulation.

The main contributions of this paper are as follows: (1) This study
facilitates cross-scale motion measurement through the microvision-
based method without additional encryption. (2) A high-resolution
microstructural marker is meticulously designed and manufactured
based on the periodic and fiducial pattern, which significantly mini-
mizes errors in measurement range extension and ensures the precise
construction of the global map. (3) A coordination strategy based on a
fixed magnification of the microvision system is devised to both align
the requirements of robotic macro-micro manipulation and simplify the
system setup.

The characteristics comparison of the proposed cross-scale mea-
surement method with similar microvision-based methods is listed in
Table 1. The proposed cross-scale measurement method not only can
ensure switching between fine and coarse positioning during robotic
macro-micro manipulation but also can be applied to cell manipulation
and biomedical characterization in the future [16-18]. The remainder
of this article is organized as follows. Section 2 presents the method-
ology of the cross-scale microvision-based method. In Section 3, an
experimental system is established, and the versatility of the pro-
posed method is verified by other dedicated instruments in precision
engineering. Finally, Section 4 concludes this article.

2. Methodology of the cross-scale microvision measurement sys-
tem

In this paper, we introduce a novel cross-scale measurement sys-
tem based on computer microvision within the framework of robotic
macro-micro manipulation, as depicted in Fig. 1. The process of the
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Fig. 1. Framework of the robotic macro-micro manipulation system using the computer
microvision.

proposed cross-scale measurement for robotic macro-micro manipula-
tion is outlined in Fig. 2, encompassing two main components: global
map construction and motion measurement. The global map construc-
tion is serving as an initialization for motion measurement in robotic
macro-micro manipulation.

2.1. Design of the microstructural marker and global map construction

To facilitate the measurement of macroscale motion by the micro-
vision system, it is imperative to establish a global map that extends
the measuring range. This is accomplished by capturing microscopic
images of distinct contiguous regions through robotic manipulation.
The global map of the robot workspace can subsequently be constructed
from regional microscopic images, employing an appropriate image
stitching technique [19]. This approach effectively extends the sensing
range of the computer microvision.

A high-resolution marker is devised based on the Archimedean
spiral architecture to mitigate motion measurement errors arising from
global map construction. Significantly, the Archimedean spiral exhibits
the property that any ray originating from the origin intersects succes-
sive turns of the spiral at points with a constant separation distance.
Therefore, the mapping relationship between the one-dimensional pa-
rameter w and the two-dimensional coordinates (x, y) can be established
using the parametric equation as follows:

{ x = (a+ bw) - cosw &)

y=(a+ bw) - sinw

where the constant separation distance is represented by 2zb, with a
denoting the distance between the fixed point and the coordinate center
and o governing the size of the Archimedean spiral. Motivated by this
appealing property, the designed marker integrates the Archimedean
spiral with equidistant grids. This fusion ensures that each region in
the global map can be perceived as a distinctive pattern for visual
recognition, as illustrated in Fig. 3.

Fig. 2(a) shows the overall procedure for global map construc-
tion. After placing the high-resolution microstructural marker onto the
macro-micro robot and the subsequent movement to acquire different
FOV microscopic images, measuring range extension is accomplished
through image stitching incorporating the regionally unique pattern
design. Specifically, image stitching relies on registration in the over-
lapping regions to resolve the transformation of multiple microscopic
images. Distinguished by its high efficiency and robustness, the DAISY
descriptor stands out for its ability to be efficiently computed for dense
feature extraction with high matching accuracy [20]. Employing a
circular neighborhood and the Gaussian filter function for convolution,
the gradients are accumulated into histograms in the direction of
convolution. Assuming the convolution of the Gaussian filter at pixel
(u,v) in the jth direction in the overlapping region of the microscopic
images, it can be obtained:

o1 (u,v) )

GE(uv) = Gy, * ( >

(2)
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Fig. 2. Cross-scale motion measurement method based on computer microvision. (a) Global map construction. (b) Dense feature matching for FOVs stitching. (c¢) Learning-based
model for FOV recognition. (d) Real-time cross-scale motion measurement for robotic macro-micro manipulation.

Fig. 3. Design of the marker for cross-scale motion measurement.

LG (V)] 3)

where 0 = 1,2, ..., j denotes each gradient direction, (-)* represents the
calculation (@)™ = max(a,0), Gy corresponds to the Gaussian kernel,
and Y controls the size of circular region. Therefore, the histogram of
the Gaussian convolution gradient for each pixel is obtained as Hy.
In terms of the neighborhood structure, the descriptor can be con-
structed as:
N . -
H 31 (u,v)
Hy (3 vo D)o He, (s v,)

Hgy (s v, r1))s e Hao (L, vo7,) )

Hy () = [GZ(,v), GE (1, v), ..

d(u,v) =

HE, (G var) e HE (G (var,)

where m denotes the layer number, n represents the direction of each
layer, and /;(u,v,r;) denotes the jth neighborhood location of pixel
(4, v) in the ith direction with a distance r. Given the separability of the
Gaussian filter functions, recalculation of the convolution histograms is
not necessary. For image registration, parameters n = 8 and m = 2 are
chosen to attain the highest accuracy [21].

An enhancement procedure is employed after extracting feature in-
formation from regional microscopic images, as illustrated in Fig. 2(b).
This procedure encompasses the following steps: normalizing the vec-
tors to enhance invariance to illumination, reducing the dimension of

the feature descriptor through principal component analysis to further
enhance efficiency, and compressing the storage occupancy of the
descriptor through dynamic quantization for multi-image stitching.

After constructing the feature descriptors for every pixel in the
overlapping regions, feature matching is performed employing the
Euclidean distance to assess the similarity:

D(d;.d)) = ®)

where d; and d; are descriptors in different microscopic images. Once
image registration is finalized in the overlapping regions, the transfor-
mations among multiple microscopic images are computed. The global
map is ultimately derived from regional microscopic images through an
image compositing algorithm [22].

2.2. Real-time FOV recognition using the learning-based approach

By moving the macro-micro robot and automatically capturing the
microscopic image sequence, the global map can then be constructed
using the aforementioned method, extending the range of microvision-
based sensing. Thus, the macro-motion measurement remains real-time
FOV recognition within the global map.

Robotic systems have significantly benefited from the implementa-
tion of learning-based approaches [23], particularly in the domain of
precise microvision-based measurement. To attain high accuracy and
efficiency in FOV recognition, learning-based approaches are consid-
ered, with a particular focus on utilizing the deep convolutional neural
network (DCNN) for image recognition. DCNN demonstrates an excep-
tional performance owing to several factors: (1) they facilitate effective
dimension reduction to handle large amounts of image data, thereby
reducing the number of required parameters; (2) they preserve original
image features, ensuring recognition accuracy; (3) they operate in a
manner akin to the human visual system, progressively abstracting the
sensing image; and (4) they enable data-driven automatic extraction of
image features, eliminating the need for specific image feature selection
in model design.

Consequently, a real-time FOV recognition method is developed
based on the DCNN approach. To further augment the performance of
the DCNN model, a residual learning architecture [24] is incorporated
into the model design. Including shortcut connections in the neu-
ral network enhances gradient propagation and model generalization,
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culminating in creating a residual neural network model specifically
designed for estimating the FOV location within the global map.

The designed DCNN model is comprised of five convolutional layers
and one fully connected layer. Initially, a convolutional layer with 64
filters, a substantial filter size of 5 x 5, and a step size of 2 is devised to
downsample the microscopic images from the input layer. To expedite
convergence and enhance the stability of the model, a batch normal-
ization module [25] has been integrated. ReLu activation [26] follows
to introduce nonlinear factors and enhance the expressive ability of
the learning model. Following this, through maxpooling, the maximum
characteristic response point in the 2-neighborhood is selected, with
the step size set to 2 to avoid redundant scanning of the same area.
This approach reduces the model calculations while retaining the main
texture features of the image. The first designed residual block includes
64 convolutional filters with a size of 3 x 3, batch normalization, and
a ReLu layer. It is noteworthy that the batch normalization and the
ReLu layer precede the convolutional layer to further diminish model
error. In the second residual block, the number of filters is increased to
256 to adequately extract image features. The branch contains filters
with a size of 1 x 1 to balance the dimensions. Subsequently, the global
average pooling layer is connected to reduce network parameters and
mitigate over-fitting. A fully connected layer serves as the classifier,
with its output corresponding to the total FOV image number. Finally,
the Softmax function is employed to rank the data from the fully
connected layer, and the region estimation is ultimately provided in the
output layer. Fig. 2(c) illustrates the detailed structure of the designed
DCNN model, where the colors denote different types of layers.

The aforementioned DCNN model is then trained using the labeled
regional FOV images, which can be obtained by labeling and scanning
the workspace of the macro-micro robot using the computer micro-
vision. Thus, the trained DCNN model would contain the global map
information for location estimation of the real-time FOV.

2.3. Cross-scale motion estimation for robotic macro-micro manipulation

During the cross-scale motion measurement, the macro-robot
equipped with the microstructural marker moves automatically first.
Subsequently, the stationary microvision system captures a sequence of
microscopic images of regional FOVs, which are later stitched together
using the previously mentioned dense feature matching technique. A
global map is then constructed using the designed pattern from the
microstructural marker. This map is subsequently fed into the DCNN
for real-time FOV recognition, serving as a crucial step in the overall
motion measurement procedure.

After constructing the DCNN model, the computer microvision sys-
tem can measure cross-scale motion in robotic macro-micro manipula-
tion. Once the real-time FOV image is input into this learning-based
model, the FOV’s location is recognized based on the global map.
Following coarse positioning, the displacement of the centers of dif-
ferent FOVs is calculated using equidistant grids on the high-resolution
marker to measure the movement of the macro-positioning robot. Using
Otsu’s method, binary thresholding is performed, followed by image
closing to obtain clear patterns of real-time FOV images and the global
map. Based on the known fixed distance between the grids, the macro-
motion across different FOVs is obtained. During fine positioning and
rotation, an automatic feature-to-phase motion tracking method from
our latest work [27] is employed to precisely measure micro-motion.
The process of real-time cross-scale motion measurement is shown in
Fig. 2(d). Consequently, the proposed method achieves motion mea-
surement with high efficiency, an extensive range, and high precision
for robotic macro-micro manipulation using computer microvision.
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3. Experiments and discussions
3.1. Experimental setup

A microvision-based motion measurement system was developed
in our ISO Class 7 cleanroom. The microvision system was composed
of a focus motor (TSA150-ABZ, Zolix, China), a camera (Genie TS
M2048, Tendency Dalsa, Canada), a zoom lens (1-6010, Navitar, USA),
an objective lens (M Plan Apo 10x, Mitutoyo, Japan), a sample stage
(DZTSA300GAB-SVO1, Zolix, China), an illuminator (LMI-6000, Dolan-
Jenner, USA) and a vibration isolation table (Huaan Precision Metrol-
ogy, China). Specifically, the total magnification of the microvision sys-
tem after calibration was 16.25, and the corresponding pixel intensity
was 0.355 pm/pixel. As presented in Fig. 4(a), a macro-positioning robot
based on the 3-PRR parallel mechanism (P and R stand for prismatic
and resolute joints, respectively) and a micro-positioning robot based
on 3-RRR compliant mechanism were designed and manufactured in
our previous work [28,29], which were driven by ultrasonic motors
(U-264, PI, Germany) and piezoelectric actuators (GmbH P-841.2B, PI,
Germany), respectively. Both the robots and the microvision system
were programmed and controlled from a PC (Intel Core i7-4770M, CPU
2.40 GHz, RAM 8 GB). Additionally, the capacitive sensor (CS) (GmbH
D-E 20.200, PI, Germany) for micro-motion measurement [30] and the
laser displacement sensor (LDS) (LK-H050, Keyence, Japan) for macro-
motion measurement [31] were employed in the experimental setup
as comparisons to the proposed method. The experimental system is
shown in Fig. 4(b).

3.2. Real-time FOV recognition test

In the experiments, the marker for cross-scale motion measure-
ment was manufactured on a glass substrate using photolithography
(Hongcheng Optical, China) with 1 pm precision and 3 mm thickness.
Considering the FOV size of the experimental microvision system,
the microstructural pattern contains the Archimedean spiral with the
constant separation distance of 200 pm, and the distance between
horizontal and vertical lines was 100 pm, while all the line widths were
20 pm. During the experiments, the microstructural marker was affixed
to the center of the robot, and the pattern was utilized for real-time
FOV recognition and cross-FOV macro-motion measurement, while the
transparent background provided a natural texture for micro-motion
tracking.

As the first step of the online experiment, global mapping was
conducted using the method proposed in Section 2.1. To obtain various
regional microscopic images, the robot moved equidistantly while the
microvision position was fixed. A zigzag path was strategically planned
to enhance the efficiency of scaning different FOV, as indicated by the
red arrow in Fig. 5. Corresponding to the 1200 x 1200 image resolution
and the 30% overlap percentage, the step size of the macro-positioning
robot for switching FOVs was set to 298.2 pm. After acquiring the mi-
croscopic image sequence, image stitching was performed to construct
the global map, where the process diagram and the resulting diagram
are also shown in Fig. 5. Consequently, the effective sensing range of
the microvision was extended from 426 x 426 pm to 3.11 x 3.11 mm.

Real-time FOV recognition tests were conducted to validate the
effectiveness of the proposed learning-based model. Based on the la-
beled FOV images, the residual neural network designed in Section 2.2
was trained. Specifically, the microscopic images of each area were
randomly cropped into 100 images with a 1000 x 1000 pixel resolution
for training data augmentation. Random rotations from —5 to 5 degrees
and rescaling from 0.9 to 1.1 were applied to enhance the robustness
of the model. Twenty percent of the training data was allocated for
validation. The Adam optimization algorithm was employed during the
training process with a 0.001 initial learning rate and a 128 mini-batch
size. A piece-wise learning rate strategy was implemented, with a 0.1
learning rate drop factor every 10 epochs. The training was conducted
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with GPU acceleration (GeForce GTX 1080Ti, NVIDIA, USA), resulting
in a total training time of 14 min and 33 s. The validation loss decreased
from 15.34 to 0.01 throughout the iteration, ultimately achieving a
100% validation accuracy after training.

To verify the effectiveness of the trained residual neural network
for real-time FOV recognition, 200 tests were conducted while the
macro-positioning robot moved randomly within the constructed global
map. Additionally, as representatives of feature matching and template
matching, the SURF-based and SSD-based microvision methods [32,33]
were employed for comparison with the proposed approach. The results
of the real-time FOV recognition tests are listed in Table 2. Both the
proposed learning-based approach and template matching achieved
100% recognition accuracy in the tests, indicating the effectiveness of

Table 2
Results of real-time FOV recognition.
Methods Performance
Accuracy (%) Speed (s)
Template matching 100 22.87
Feature matching 88.5 12.98
Proposed approach 100 0.21

the microstructural marker design in making the pattern distinguish-
able enough for different regions in the global map. However, the
speed of template matching was more than 108 times slower than
the proposed approach. Although feature matching was faster than
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Fig. 6. Evaluation of macro-motion measurement. (a) The location of the FOVs in the global map before and after diagonal positioning of the robot, where the sub-images are
the real-time FOV after binarization and morphological processing. Displacement of the macro-positioning robot in (b) x-direction and (c) y-direction for robustness evaluation.

Table 3
Experimental results of the proposed method for motion measurement of
macro-positioning robot.

Direction Microvision (mm) LDS (mm) Deviation (mm) Linearity (%)
X 2.6526 2.6471 0.009 0.34
Y 2.6799 2.6856 0.007 0.26

template matching in real-time FOV recognition, the accuracy was
relatively low. One reason for this is that feature matching is based on
feature descriptor extraction, and there are many feature mismatches
without effective algorithms to remove those outliers. The proposed
approach enjoys better FOV recognition accuracy and speed compared
to conventional matching methods, thus it can rapidly and precisely
locate the real-time FOV in the global map.

3.3. Evaluation of macro-motion measurement

To verify the measurement performance of the proposed cross-FOV
measurement method for macro-motion, a LDS system with two laser
displacement sensors was constructed. The LDS had a measuring range
of 10 mm, a linearity of +0.02%, and a repeatability of 0.025 pm.
During the experiment, the macro-positioning platform was controlled
to travel on the diagonal of the constructed global map, thoroughly
verifying the range, as illustrated in Fig. 6(a). Real-time FOV images
were acquired before and after the macro-positioning robot movement,
and the motion was estimated based on the equidistant grid on the
global map. Simultaneously, the LDS measured the motion as a bench-
mark to evaluate the proposed method. Ten groups of experiments
were conducted, and the maximum measurement deviation of the
microvision system and the LDS in the x-direction was 0.009 mm with
a linearity of 0.34% in the large-stroke movement of 2.6526 mm. The

maximum measurement deviation in the y-direction was 0.007 mm
with a linearity of 0.26% in the large-stroke movement of 2.6856 mm,
as summarized in Table 3.

To assess the robustness of the macro-motion measurement, the
macro-positioning robot was moved along both the x- and y-directions
over the constructed global map. In Figs. 6(b) and 6(c), the red arrows
illustrate the displacement of the robot. The robot was moved in
steps of 300 pm from its starting position at 0 to the final position of
2700 pm. Measurement data from both the microvision and the LDS
were collected, and the measurement errors of the proposed method
were calculated. The experimental results of 200 measurements are
presented in Fig. 7(a). The average error of the cross-FOV motion mea-
surement in the x-direction was 2.3318 um, with a standard deviation of
1.9549 pm. The measurement errors were mainly distributed between
-5 to 5 pm, as shown in Fig. 7(b). In the y-direction, the average
position measurement error was 2.4514 pm, and the standard deviation
was 2.1439 pm. The measurement errors followed a normal distribution
with the mean near 0, as presented in Fig. 7(d). These results indicate
that the measurement errors of the motion of the macro-positioning
robot were primarily random errors in the experiments. The errors are
acceptable for macro-motion measurement because the manufacturing
accuracy of the marker in the experiment was 1 pm. The measurement
accuracy for macro-motion can be further increased by adopting a
marker with higher precision.

Subsequently, the macro-rotation measurement capability of the mi-
crovision system was tested using the macro-positioning robot. Specif-
ically, the macro-positioning robot was controlled to perform a recip-
rocating rotation, which was measured in real-time by the microvision
system using the method described in Section 2.3. The experimental
result is presented in Fig. 7(c), where the blue line represents the
measurement result of the microvision system, and the red dashed
line represents the planned trajectory of the robot. The experimental
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result shows the measurement and the planned trajectory are highly
consistent, thus verifying the macro-rotation measurement capability
of the proposed method.

3.4. Evaluation of micro-motion measurement

A CS system was employed as the reference to validate the micro-
motion measurement ability of the proposed microvision-based
method. A circular trajectory with a 10 pm radius for the micro-
positioning robot was used to evaluate the displacement measurement
performance. The micro-motion tracking results from the computer
microvision m, and the CS m, are presented in Fig. 8, where a total
of 955 measurements were recorded. It can be observed that the
measurement results of both microvision and CS coincide closely on
the x—y plane, as shown in Fig. 8(a). Furthermore, a smooth tracking
trajectory from the microvision was recorded, as shown in Fig. 8(b),
which is precisely aligned with the measurement of CS in terms of time.
These results indicate that the proposed computer microvision can
accurately estimate positions in space and timely track micro-motion,
including curves and straight trajectories.

The micro-motion measurement error by the microvision can be
calculated as e,

max

= max |m, —m.|, where the maximum displace-
ment measurement error e,,, is defined by the maximum deviation
between m,, and m,. As presented in Fig. 8(d), the maximum position
measurement error was recorded as 0.219 pm. The root-mean-square
error, which often indicates the deviation between the observed and
real values, was also calculated and recorded as 0.065 pm. The an-
gular measurement capability of the microvision system was tested
by rotating the micro-positioning robot from 0 to 3 mrad in steps of
1 mrad. The microvision and CS simultaneously tracked the micro-
rotation, as illustrated in Fig. 8(c). The experimental results from the
microvision were consistent with those from the CS. As presented
in Fig. 8(e), the maximum angular measurement error of the entire
micro-rotation was found to be 0.191 mrad. The experimental results
prove that the precision of the proposed method is similar to that
of the CS. Moreover, the proposed microvision-based method enjoys
high precision for micro-motion measurement and it has the potential
to replace the expensive CS, which can simplify the system setup for
robotic macro-micro positioning.
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Fig. 8. Micro-motion measurement results by the computer microvision and CS in (a)
x—y plane and (b) x—y—t space. (c) Rotation by robotic micro-positioning. (d) Position
measurement error of the microvision system. (e) Angular measurement error of the
microvision system.

3.5. Discussion

The designed microstructural marker in the global map construc-
tion serves a dual purpose—it enriches pattern texture for efficient
image stitching and ensures controllable measurement errors. In partic-
ular this marker facilitates accurate measurement of cross-FOV macro-
motion. The marker-assisted global map construction transforms the
issue of image stitching errors in cross-scale motion measurement into
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manufacturing errors of the marker, a task easily managed by the pho-
tolithography process. Consequently, the proposed microvision-based
measurement method enhances the accuracy of measuring cross-FOV
macro-motion.

Although the tracking frequency of the microvision-based method
under the current experimental setup is lower than CS due to the
computation of image processing, with the advancement of the com-
puter hardware, utilization of parallel processing procedures, conver-
sion from MATLAB to a more efficient programming language such as
C++, the tracking frequency can be significantly improved. Moreover,
the microvision-based motion measurement enjoys the following attrac-
tive properties: (1) direct visualization result; (2) multi-DOF motion
measurement; (3) easy installation for robotic systems; (4) tremendous
information for further development. As a result, the microvision-based
method can be potentially used for micro-part assembly, cell manip-
ulation, closed-loop control of robotics, micro-force sensing, full-field
strain and stress measurement.

4. Conclusion

This paper introduces a marker-assisted microvision system to en-
able cross-scale measurement for robotic automation tasks, particularly
in the context of macro-micro manipulation. A microstructural marker
is designed and manufactured to extend the sensing range while main-
taining measurement accuracy. A learning-based approach is proposed
for macro-motion measurement, and a micro-motion tracking approach
is integrated to ensure compatibility with robotic macro-micro manip-
ulation. The key performances of the proposed method are evaluated
through several experimental studies using the established setup. Under
a fixed magnification, the microvision system exhibits high accuracy
in cross-scale measurement, i.e., 9 um for macro-motion, 219 nm
for micro-motion in translation, and 0.191 mrad in rotation. This
microvision-based method can offer effective visual feedback, enabling
potential closed-loop control applications for robotic macro-micro ma-
nipulation, assembly, or sample mechanical characterization.
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